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Overview

Partial differential equations are classified in many ways. One such way is
classifying them as linear and non-linear. Linear equations have an
algebraic nature in their solution sets; in the sense that these solutions can
be superimposed. Nonlinear equations do not share this property.

Equally important in classification schemes of a PDE is the specific nature
of the physical phenomenon that it describes; for example, a PDE can be
classified as wave-like, diffusion like, or static, depending upon whether it
models wave propagation, a diffusion process, or an equilibrium state,
respectively. For example, Laplace’s equation is a linear equilibrium
equation; the heat equation is a linear diffusion equation because the heat
flow is a diffusion process. In three lectures, we discuss some physical
examples and methods for solving them using PDE as a tool.
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Classification of Partial Differential Equations of Second
order

The general form of second order partial differential equation is given by

A
∂2z

∂x2
+ B

∂2z

∂x∂y
+ C

∂2z

∂y2
+ D

∂z

∂x
+ E

∂z

∂y
+ Fz = G (x , y)

where A, B, C , D, E , F and G are functions of x and y or constants.

Now consider the term
B2 − 4AC .

(i) If B2 − 4AC < 0, then the equation is Elliptic

(ii) If B2 − 4AC > 0, then the equation is Hyperbolic

(iii) If B2 − 4AC = 0, then the equation is Parabolic.
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Examples

Exercise 1.

Classify the following equations

1. uxx − 3uxy + uyy = 0
Solution. Here A = 1, B = −3 and C = 1. Therefore

B2 − 4AC = (−3)2 − 4(1)(1) = 9− 4 = 5 > 0

Hence the given equation is hyperbolic.

2. 4uxx − 7uxy + 3uyy = 0
Solution. Here A = 4, B = −7 and C = 3. Therefore

B2 − 4AC = (−7)2 − 4(4)(3) = 49− 48 = 1 > 0

Hence the given equation is hyperbolic.
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Examples

Exercise 2.

Classify the following equations

3. c2uxx + 2cuxy + uyy = 0, a 6= 0
Solution. Here A = c2, B = 2c and C = 1. Therefore

B2 − 4AC = (2c)2 − 4(c2)(1) = 4c2 − 4c2 = 0

Hence the given equation is Parabolic.

4, uxx + 2uxy + 5uyy = 0
Solution. Here A = 1, B = 2 and C = 5. Therefore

B2 − 4AC = (2)2 − 4(1)(5) = 4− 20 = −16 < 0

Hence the given equation is elliptic.
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Examples

Exercise 3.

Classify the following equations

5. 8uxx − 2uxy − 3uyy = 0
Solution. Here A = 8, B = −2 and C = −3. Therefore

B2 − 4AC = (−2)2 − 4(8)(−3) = 4 + 96 = 100 > 0

Hence the given equation is hyperbolic.

6. fxx + k2fyy = 0
Solution. Here A = 1, B = 0 and C = k2. Therefore

B2 − 4AC = 0− 4(1)(k2) = −4k2

If k = 0 then

B2 − 4AC = 0,

the given equation is Parabolic.
If k 6= 0 then B2 − 4AC = −4k2 < 0, the given equation is elliptic.
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Examples

Exercise 4.

Classify the following equations

7. 4∂
2u
∂x2 + 4 ∂2u

∂x∂y + ∂2u
∂y2 − 6∂u∂x − 8∂u∂y − 16u = 0

Solution. Here A = 4, B = 4 and C = 1. Therefore

B2 − 4AC = (4)2 − 4(4)(1) = 16− 16 = 0

Hence the given equation is parabolic.

8. ∂2u
∂x2 + ∂2u

∂y2 =
(
∂u
∂x

)2
+
(
∂u
∂y

)2

Solution. Here A = 1, B = 0 and C = 1. Therefore

B2 − 4AC = 0− 4(4)(1) = −4 < 0

Hence the given equation is elliptic.
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Examples

Exercise 5.

Classify the following equations

9. y2uxx − 2xyuxy + x2uyy + 2ux − 3uy = 0
Solution. Here A = y2, B = −2xy and C = x2. Therefore

B2 − 4AC = (−2xy)2 − 4(y2)(x2) = 4x2y2 − 4x2y2 = 0

Hence the given equation is parabolic.

10. y2uxx + x2uyy + u2
x + u2

y + 7 = 0
Solution. Here A = y2, B = 0 and C = 1. Therefore

B2 − 4AC = 0− 4(y2)(1) = −4y2

If y = 0 then B2 − 4AC = 0, the given equation is parabolic.
If y 6= 0 then B2 − 4AC < 0, the given equation is elliptic.
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Examples

Exercise 6.

Classify the following equations

11. uxx + xuyy = 0
Solution. Here A = 1, B = 0 and C = x. Therefore

B2 − 4AC = 0− 4(1)(x) = −4x

If x = 0 then B2 − 4AC = 0, the given equation is parabolic.
If x > 0 then B2 − 4AC < 0, the given equation is elliptic.
If x < 0 then B2 − 4AC > 0, the given equation is hyperbolic.

12. x2uxx + 2xuxy + (1− y2)uyy = 0
Solution. Here A = x2, B = 2x and C = 1− y2. Therefore

B2 − 4AC = (2x)2 − 4(x2)(1− y2) = 4x2y2

If x = 0, y = 0 then B2− 4AC = 0, the given equation is parabolic. If
x 6= 0, y 6= 0 then B2 − 4AC > 0, the given equation is hyperbolic.
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Method of Separation of Variables

This is the one of the simple and mostly used method to solve the second
order partial differential equations. Since in all our partial differential
equations we take z as a dependent variable and x and y as independent
variables, then the relation z = f (x , y) to be the solution.

In this method we assume that the solution is the product of two
functions, one of them is function of x alone and the other a function of y
alone. By this the partial differential equation now converted into ordinary
differential equations and this equations can solved easily. The following
examples illustrate us how this procedure works.
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Examples

Example 7.

Solve 3x ∂z
∂x
− 2y ∂z

∂y
= 0 by the method of separation of variables.

Solution. The given differential equation is 3x ∂z
∂x
− 2y ∂z

∂y
= 0.

Let us assume that z = X (x)Y (y) be the solution of the above equation.
Then

∂z

∂x
= X ′Y and

∂z

∂y
= XY ′.

Substituting these values in partial differential equation we get 3xX ′Y − 2yXY ′ = 0.

Hence we get 3x X ′

X
= 2y Y ′

Y
= k (say). Now 3x X ′

X
= k gives X ′

X
= k

3x
, and hence X = c1x

k
3 .

In a similar way 2y Y ′

Y
= k gives Y = c2y

k
2 . Hence z = c1x

k
3 c2y

k
2 = cx

k
3 y

k
2 , where c = c1c2.
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Examples

Example 8.

Solve 2 ∂z
∂x

+ ∂z
∂y

= 0, z(x , 0) = 5e−x by the method of separation of variables.

Solution. The given differential equation is 2 ∂z
∂x

+ ∂z
∂y

= 0.

Let us assume that z = X (x)Y (y) be the solution of the above equation. Then
∂z
∂x

= X ′Y and ∂z
∂y

= XY ′. Substituting these values in partial differential equation we

get 2X ′Y + XY ′ = 0 and hence 2X ′

X
= −Y ′

Y
= k (say). Now, 2X ′

X
= k gives X = c1e

k
2
x .

In a similar way, Y ′

Y
= k gives Y = c2eky . Hence

z(x , y) = c1e
k
2
xc2e

ky

= ce
k
2
xeky

where c = c1c2. Give that z(x , 0) = 5e−x . So z(x , 0) = ce
k
2
xek(0) and 5e−x = ce

k
2
x .

Solving them, we get c = 5 and k
2

= −1⇒ k = −2.
Substituting these values we get

z(x , y) = 5e−(x+2y).
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One dimensional Wave Equation

Let us consider a tightly stretched elastic string of length l is fixed at the
end points 0 and A, subject to a constant tension T . The string is
released from rest and allowed to vibrate. Now we shall determine the
displacement y(x , t) of the point x of the string at time t > 0. We make
the following assumptions.

1. The mass per unit length of the string is constant.

2. The string is perfectly elastic and so it does not offer resistance to bending.

3. The tension caused by stretching the string before fixing it to the end points is constant
at all the points of the deflected string at any time.

4. The tension T is so large such that the gravitational force and the friction may be
neglected.

5. The string performs a small transverse motion in a vertical plane, that is, every particle of
the string moves strictly vertically and so that the deflection and the slope at every point
of the string remain small in absolute value.
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One dimensional Wave Equation

From these assumptions we may except that the solution y(x , t) of the
differential equation to be obtained will reasonably well to describe small
vibrations of the string.
To derive the differential equation let us consider the forces acting on a
small portion PQ where P(x , y) and Q(x + ∆x , y + ∆y) of the string (see
fig.)
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One dimensional Wave Equation

Let ψ and ψ + ∆ψ be the angles made by the tangents at P and Q
respectively with the x − axis and PQ = ∆s.

By Newton’s second law of motion, the total force acting on this piece of
string is equal to the mass of the string multiplied by its acceleration.
That is,

Force = mass× acceleration (1)

= (m∆s)
δ2y

δt2
(2)
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One dimensional Wave Equation

Here to find acceleration we take partial derivative of y , w.r.t. t because y
is a function of two variable. We assume in this equation that the string is
moving only in the xy -plane and that each particle in the string moves
only vertically. The actual external force acting on PQ in the positive y
direction is

= T sin(ψ + ∆ψ)− T sinψ

= T (ψ + ∆ψ − ψ) = T∆ψ (3)

Equating (1) and (2) we have

(m∆s)
∂2y

∂t2
= T∆ψ

∂2y

∂t2
=

T

m

∆ψ

∆s
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One dimensional Wave Equation

Now taking the limit as Q −→ P we get

∂2y

∂t2
=

T

m

dψ

ds
(4)

where dψ
ds is the curvature at P is given by

dψ

ds
=

1

ρ
=

∂2y
∂x2[

1 +
(
∂y
∂x

)2
] 3

2

=
∂2y

∂x2

since
(
∂y
∂x

)2
is very small by the assumption (5). Hence we get

∂2y

∂t2
=

T

m

∂2y

∂x2
= a2∂

2y

∂x2
, where a2 =

T

m
. (5)
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Solution of wave equation by separation of variables

The wave equation is

∂2y

∂t2
= a2∂

2y

∂x2
(1)

We try to solve the equation by separation of variable method.Let

y(x , t) = X (x)T (t) (2)

be the solution of the above equation with X (x) is a function of x alone
and T is a function of t alone.
Differentiating (2) partially with respect to x and t we get

∂2y

∂x2
= X ′′T and

∂2y

∂t2
= XT ′′.
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Solution of wave equation by separation of variables

Substituting these values in (1) we get

XT ′′ = a2X ′′T

X ′′

X
=

1

a2

T ′′

T
= k say

X ′′

X
= k and

T ′′

a2T
= k

X ′′ − kX = 0 (3)

and

T ′′ − ka2T = 0 (4)
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Solution of wave equation by separation of variables

Case 1. If k = 0 then

X ′′ = 0 T ′′ = 0

d2X

dx2
= 0

d2T

dt2
= 0

X (x) = (c1x + c2) T (t) = (c3t + c4)
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Solution of wave equation by separation of variables

Case 2. If k is positive then k = p2 (say)

X ′′ − p2X = 0 T ′′ − p2a2t = 0

d2X

dx2
− p2X = 0;

d2T

dt2
− p2T

m2 − pa2 = 0 m2 − a2p2 = 0

m = ±p m = ±ap
X (x) = (c5e

px + c6e
−px) T (t) = (c7e

pat + c8e
−pat)
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Solution of wave equation by separation of variables

Case 3. If k is negative then k = −p2 (say)

X ′′ + p2X = 0 T ′′ + p2a2t = 0

d2X

dx2
+ p2X = 0;

d2T

dt2
+ p2T

m2 + p2 = 0 m2 + a2p2 = 0

m = ±pi m = ±api
X (x) = (c9 cos px + c10 sin px) T (t) = (c11 cos pat + c12 sin pat)
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Solution of wave equation by separation of variables

Hence all possible solutions of the wave equation are

y(x , t) = (c1x + c2)(c3t + c4) (5)

y(x , t) = (c5e
px + c6e

−px)(c7e
pat + c8e

−pat) (6)

y(x , t) = (c9 cos px + c10 sin px)(c11 cos pat + c12 sin pat) (7)
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Solution of wave equation by separation of variables

Out of these three solution we have to choose the correct solution which is
suitable for the given boundary conditions and physical nature of the
problem. For the vibration of the string problem, the two boundary
conditions y(0, t) = 0 and y(l , t) = 0 is always possible since the two ends
at x = 0 and x = l are fixed. Now we applying these two boundary
conditions to find out the correct solution.
Applying the condition y(0, t) = 0 for the equation (5) we get

y(x , t) =(c1x + c2)(c3t + c4)

y(0, t) =c2(c3t + c4) = 0

=⇒ c2 = 0

Applying the condition y(l , t) = 0, we get

y(l , t) =c1(l)(c3t + c4) = 0

l 6= 0 and (c3t + c4) 6= 0

=⇒ c1 = 0
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Solution of wave equation by separation of variables

Hence we get y(x , t) = 0 as trivial solution. Applying the condition
y(0, t) = 0 for the equation (6) we get

y(0, t) =(c5 + c6)(c7e
pat + c8e

−pat) = 0

(c7e
pat + c8e

−pat) 6= 0

=⇒ (c5 + c6) = 0

Applying the condition y(l , t) = 0, we get

y(l , t) =(c5e
pl + c6e

−pl)(c7e
pat + c8e

−pat) = 0

l 6= 0 and (c7e
pat + c8e

−pat) 6= 0

=⇒ (c5e
pl + c6e

−pl) = 0

c5 = 0, c6 = 0
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Solution of wave equation by separation of variables

In this case also we get y(x , t) = 0 as trivial solution.
Hence the correct solution is

y(x , t) = (c9 cos px + c10 sin px)(c11 cos pat + c12 sin pat).
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Problems on vibrating string with initial velocity zero

Example 9.

A tightly stretched flexible string has its ends fixed at x = 0 and x = `. At
the time t = 0, the string is given a shape defined by

F (x) = kx2(`− x),

where k is a constant, and then released from rest. Find the displacement
at any point x of the string at any time t > 0.
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Solution of a problem on vibrating string with initial
velocity zero

The partial differential equation corresponding to the BVP is

∂2y

∂t2
= a2∂

2y

∂x2
(1)

The boundary conditions are

(i) y(0, t) = 0, ∀ t > 0

(ii) y(l , t) = 0, ∀ t > 0

(iii)

(
∂y

∂t

)
t=0

= 0, 0 < x < l

(iv) y(x , 0) = k(lx2 − x3), 0 < x < l
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Solution of a problem on vibrating string with initial
velocity zero

Solving (1) by method of separation of variable we get,

y(x , t) = (c1x + c2)(c3t + c4) (2)

y(x , t) = (c5e
px + c6e

−px)(c7e
pat + c8e

−pat) (3)

y(x , t) = (c9 cos px + c10 sin px)(c11 cos pat + c12 sin pat) (4)

Using the boundary conditions (i) and (ii) both the equation (2) and (3)
are trivial solutions, that is y(x , t) = 0
Hence the most suitable solution for equation (1) is

y(x , t) = (c9 cos px + c10 sin px)(c11 cos pat + c12 sin pat)
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Solution of a problem on vibrating string with initial
velocity zero

Using the boundary condition (i), we get

c9(c11 cos pat + c12 sin pat) = 0

But (c11 cos pat + c12 sin pat) 6= 0

=⇒ c9 = 0

y(x , t) = (c10 sin px)(c11 cos pat + c12 sin pat) (5)
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Solution of a problem on vibrating string with initial
velocity zero

Using the boundary condition (ii), we get

c10 sin pl(c11 cos pat + c12 sin pat) = 0

But (c11 cos pat + c12 sin pat) 6= 0 and c10 6= 0 [if c10 = 0, we get a trivial
solution as y(x , t) = 0]

=⇒ sin pl = 0

pl = nπ

p =
nπ

l

Hence equation (5) becomes

y(x , t) =
(
c10 sin

nπx

l

)(
c11 cos

nπat

l
+ c12 sin

nπat

l

)
(6)
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Solution of a problem on vibrating string with initial
velocity zero

To use the boundary conditions (iii), first differentiating (6) with respect
to t we get

∂y(x , t)

∂t
=
(
c10 sin

nπx

l

)(
−c11

nπa

l
sin

nπat

l
+

nπa

l
c12 cos

nπat

l

)
(
∂y

∂t

)
t=0

= 0 =⇒(
c10 sin

nπx

l

)(
0 +

nπa

l
c12(1)

)
= 0
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Solution of a problem on vibrating string with initial
velocity zero

But c10 6= 0, sin nπx
l 6= 0 and nπx

l 6= 0 and hence c12 = 0, therefore

y(x , t) = c10c11 sin
nπx

l
cos

nπat

l
(7)

The most general solution is

y(x , t) =
∞∑
n=1

cn sin
nπx

l
cos

nπat

l
(8)

P. Sam Johnson Applications of Partial Differential Equations March 6, 2020 33/233



Solution of a problem on vibrating string with initial
velocity zero

Using the boundary condition (iv) in (8) we get

y(x , 0) =
∞∑
n=1

cn sin
nπx

l
= kx2(l − x)

where cn is given by

cn =
2

l

∫ l

0
k(lx2 − x3) sin

nπx

l
dx
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Solution of a problem on vibrating string with initial
velocity zero

cn =
2k

l

(lx2 − x3)

(
−

cos nπx
l

nπ
l

)
− (2lx − 3x2)

− sin nπx
l

n2π2

l2

 + (2l − 6x)

 cos nπx
l

n3π3

l3

− (−6)

 sin nπx
l

n4π4

l4

l

0

=
2k

l

[
0 + 0 +

l3

n3π3
(−4l cos nπ − 2l cos 0) + 0

]

=
2k

l

l3

n3π3
[(−2l)(2(−1)n + 1)]

= −
4kl3

n3π3
[1 + 2(−1)n ]

y(x , t) =
∞∑
n=1

− 4kl3

n3π3
[1 + 2(−1)n] sin

nπx

l
cos

nπat

l
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Solution of a problem on vibrating string with initial
velocity zero
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Problem on vibrating string with initial velocity zero

Example 10.

A tightly stretched flexible string has its ends fixed at x = 0 and x = l . At
the time t=0, the string is given by the displacement

f (x) = kx(l − x),

where k is a constant, and then released from rest. Find the displacement
at any point x of the string at any time t > 0.
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Solution of a problem on vibrating string with initial
velocity zero

The Partial differential equation corresponding to the BVP is

∂2y

∂t2
= a2∂

2y

∂x2
(1)

The boundary conditions are

(i) y(0, t) = 0, ∀ t > 0

(ii) y(l , t) = 0, ∀ t > 0

(iii)

(
∂y

∂t

)
t=0

= 0, 0 < x < l

(iv) y(x , 0) = k(lx − x2), 0 < x < l
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Solution of a problem on vibrating string with initial
velocity zero

Solving (1) by method of separation of variable we get,

y(x , t) = (c1x + c2)(c3t + c4) (2)

y(x , t) = (c5e
px + c6e

−px)(c7e
pat + c8e

−pat) (3)

y(x , t) = (c9 cos px + c10 sin px)(c11 cos pat + c12 sin pat) (4)

Using the boundary conditions (i) and (ii) both the equation (2) and (3)
are trivial solutions, that is y(x , t) = 0
Hence the most suitable solution for equation (1) is

y(x , t) = (c9 cos px + c10 sin px)(c11 cos pat + c12 sin pat)
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Solution of a problem on vibrating string with initial
velocity zero

Using the boundary condition (i), we get

c9(c11 cos pat + c12 sin pat) = 0

But (c11 cos pat + c12 sin pat) 6= 0

=⇒ c9 = 0

y(x , t) = (c10 sin px)(c11 cos pat + c12 sin pat) (5)

Using the boundary condition (ii), we get

c10 sin pl(c11 cos pat + c12 sin pat) = 0
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Solution of a problem on vibrating string with initial
velocity zero

But (c11 cos pat + c12 sin pat) 6= 0 and c10 6= 0 [if c10 = 0, we get a trivial
solution as y(x , t) = 0]

sin pl = 0

pl = nπ

p =
nπ

l

Hence equation (5) becomes

y(x , t) =
(
c10 sin

nπx

l

)(
c11 cos

nπat

l
+ c12 sin

nπat

l

)
(6)
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Solution of a problem on vibrating string with initial
velocity zero

To use the boundary conditions (iii), first differentiating (6) with respect
to t we get

∂y(x , t)

∂t
=
(
c10 sin

nπx

l

)(
−c11

nπa

l
sin

nπat

l
+

nπa

l
c12 cos

nπat

l

)
(
∂y

∂t

)
t=0

= 0 =⇒(
c10 sin

nπx

l

)(
0 +

nπa

l
c12(1)

)
= 0
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Solution of a problem on vibrating string with initial
velocity zero

But c10 6= 0, sin nπx
l 6= 0 and nπx

l 6= 0 and hence c12 = 0, therefore

y(x , t) = c10c11 sin
nπx

l
cos

nπat

l
(7)

The most general solution is

y(x , t) =
∞∑
n=1

cn sin
nπx

l
cos

nπat

l
(8)
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Solution of a problem on vibrating string with initial
velocity zero

Using the boundary condition (iv) in (8) we get

y(x , 0) =
∞∑
n=1

cn sin
nπx

l
= kx(l − x)

where cn is given by

cn =
2

l

∫ l

0
k(lx − x2) sin

nπx

l
dx

=
2k

l

(lx − x2)

(
−

cos nπx
l

nπ
l

)
− (l − 2x)

− sin nπx
l

n2π2

l2

 + (−2)

 cos nπx
l

n3π3

l3

l

0

=
2k

l

[
0 + 0−

2l3

n3π3
(cos nπ − cos 0)

]

=
4kl2

n3π3
[1− (−1)n ]

y(x , t) =
∞∑
n=1

4kl2

n3π3
[1− (−1)n] sin

nπx

l
cos

nπat

l
.
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Problem on vibrating string with initial velocity zero

Example 11.

A tightly stretched string of length l has its ends fastened at x = 0, x = l .
The mid point of the string is then taken to height h and the released
from rest from that position. Find the lateral displacement of a point of
the string at time t from the instant of release.
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Solution of a problem on vibrating string with initial
velocity zero

The partial differential equation corresponding to the BVP is

∂2y

∂t2
= a2∂

2y

∂x2
(1)

Equation of the line OA is

y − 0 =
h − 0
l
2 − 0

(x − 0)

y =
2h

l
x

Equation of the line AB is

y − 0 =
h − 0
l
2 − l

(x − l)

y =
2h

l
(l − x)

The boundary conditions are

(i) y(0, t) = 0, ∀ t > 0

(ii) y(l , t) = 0, ∀ t > 0

(iii)

(
∂y

∂t

)
t=0

= 0, 0 < x < l

(iv) y(x , 0) =

{
2hx
l when 0 < x < l

2
2h
l (l − x) when l

2 < x < l
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Solution of a problem on vibrating string with initial
velocity zero

Solving (1) by method of separation of variable we get,

y(x , t) = (c1x + c2)(c3t + c4) (2)

y(x , t) = (c5e
px + c6e

−px)(c7e
pat + c8e

−pat) (3)

y(x , t) = (c9 cos px + c10 sin px)(c11 cos pat + c12 sin pat) (4)

Using the boundary conditions (i) and (ii) both the equation (2) and (3)
are trivial solutions, that is y(x , t) = 0
Hence the most suitable solution for equation (1) is

y(x , t) = (c9 cos px + c10 sin px)(c11 cos pat + c12 sin pat)
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Solution of a problem on vibrating string with initial
velocity zero

Using the boundary condition (i), we get

c9(c11 cos pat + c12 sin pat) = 0

But (c11 cos pat + c12 sin pat) 6= 0

=⇒ c9 = 0

y(x , t) = (c10 sin px)(c11 cos pat + c12 sin pat) (5)

Using the boundary condition (ii), we get

c10 sin pl(c11 cos pat + c12 sin pat) = 0
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Solution of a problem on vibrating string with initial
velocity zero

But (c11 cos pat + c12 sin pat) 6= 0 and c10 6= 0 [if c10 = 0, we get a trivial
solution as y(x , t) = 0]

=⇒ sin pl = 0

pl = nπ

p =
nπ

l

Hence equation (5) becomes

y(x , t) =
(
c10 sin

nπx

l

)(
c11 cos

nπat

l
+ c12 sin

nπat

l

)
(6)
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Solution of a problem on vibrating string with initial
velocity zero

To use the boundary conditions (iii), first differentiating (6) with respect
to t we get

∂y(x , t)

∂t
=
(
c10 sin

nπx

l

)(
−c11

nπa

l
sin

nπat

l
+

nπa

l
c12 cos

nπat

l

)
(
∂y

∂t

)
t=0

= 0 =⇒(
c10 sin

nπx

l

)(
0 +

nπa

l
c12(1)

)
= 0
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Solution of a problem on vibrating string with initial
velocity zero

But c10 6= 0, sin nπx
l 6= 0 and nπx

l 6= 0 and hence c12 = 0, therefore

y(x , t) = c10c11 sin
nπx

l
cos

nπat

l
(7)

The most general solution is

y(x , t) =
∞∑
n=1

cn sin
nπx

l
cos

nπat

l
(8)

Using the boundary condition (iv) in (8) we get

y(x , 0) =
∞∑
n=1

cn sin
nπx

l

=

{
2hx
l when 0 < x < l

2
2h
l (l − x) when l

2 < x < l .
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Solution of a problem on vibrating string with initial
velocity zero

where cn is given by

cn =
2

l

[∫ l
2

0

2h

l
x sin

nπx

l
dx +

∫ l

l
2

2h

l
(l − x) sin

nπx

l
dx

]

=
4h

l2

x (− cos nπx
l

nπ
l

)
− 1

− sin nπx
l

n2π2

l2

 l
2

0

+
4h

l2

(l − x)

(
−

cos nπx
l

nπ
l

)
− (−1)

− sin nπx
l

n2π2

l2

l

l
2

=
4h

l2

[
l

2

l

nπ

(
− cos

nπ

2
− 0

)
+

l2

n2π2

(
sin

nπ

2

)]
+

4h

l2

[
0−

l

2

l

nπ

(
− cos

nπ

2

)
−

l2

n2π2

(
0− sin

nπ

2

)]

=
4h

l2

2l2

n2π2
sin

nπ

2

=
8h

n2π2
sin

nπ

2
.

y(x , t) =
∞∑
n=1

8h

n2π2
sin

nπ

2
sin

nπx

l
cos

nπat

l
.
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Problem on vibrating string with initial velocity zero

Example 12.

A tightly stretched string of length 2l has its ends fastened at x = 0,
x = 2l . The mid point of the string is then taken to height b and the
released from rest from that position. Find the lateral displacement of a
point of the string at time t from the instant of release.
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Solution of a problem on vibrating string with initial
velocity zero

The partial differential equation corresponding to the BVP is

∂2y

∂t2
= a2∂

2y

∂x2
(1)

Equation of the line OA is

y − 0 =
b − 0

l − 0
(x − 0)

y =
b

l
x

Equation of the line AB is

y − 0 =
b − 0

l − 2l
(x − 2l)

y =
b

l
(2l − x)

P. Sam Johnson Applications of Partial Differential Equations March 6, 2020 54/233



Solution of a problem on vibrating string with initial
velocity zero

The boundary conditions are

(i) y(0, t) = 0,∀ t > 0

(ii) y(2l , t) = 0,∀ t > 0

(iii)

(
∂y

∂t

)
t=0

= 0, 0 < x < 2l

(iv) y(x , 0) =

{
bx
l when 0 < x < l
b
l (2l − x) when l < x < 2l .
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Solution of a problem on vibrating string with initial
velocity zero

Solving (1) by method of separation of variable we get,

y(x , t) = (c1x + c2)(c3t + c4) (2)

y(x , t) = (c5e
px + c6e

−px)(c7e
pat + c8e

−pat) (3)

y(x , t) = (c9 cos px + c10 sin px)(c11 cos pat + c12 sin pat) (4)

Using the boundary conditions (i) and (ii) both the equation (2) and (3)
are trivial solutions, that is y(x , t) = 0
Hence the most suitable solution for equation (1) is

y(x , t) = (c9 cos px + c10 sin px)(c11 cos pat + c12 sin pat)

Using the boundary condition (i), we get

c9(c11 cos pat + c12 sin pat) = 0.
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Solution of a problem on vibrating string with initial
velocity zero

But (c11 cos pat + c12 sin pat) 6= 0

=⇒ c9 = 0

y(x , t) = (c10 sin px)(c11 cos pat + c12 sin pat) (5)

Using the boundary condition (ii), we get

c10 sin p2l(c11 cos pat + c12 sin pat) = 0

But (c11 cos pat + c12 sin pat) 6= 0 and c10 6= 0 [if c10 = 0, we get a trivial
solution as y(x , t) = 0]

=⇒ sin p2l = 0

p2l = nπ

p =
nπ

2l
.
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Solution of a problem on vibrating string with initial
velocity zero

Hence equation (5) becomes

y(x , t) =
(
c10 sin

nπx

2l

)(
c11 cos

nπat

2l
+ c12 sin

nπat

2l

)
(6)

To use the boundary conditions (iii), first differentiating (6) with respect
to t we get

∂y(x , t)

∂t
=
(
c10 sin

nπx

2l

)(
−c11

nπa

2l
sin

nπat

2l
+

nπa

2l
c12 cos

nπat

2l

)
(
∂y

∂t

)
t=0

= 0 =⇒(
c10 sin

nπx

2l

)(
0 +

nπa

2l
c12(1)

)
= 0
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Solution of a problem on vibrating string with initial
velocity zero

But c10 6= 0, sin nπx
l 6= 0 and nπx

2l 6= 0 and hence c12 = 0, therefore

y(x , t) = c10c11 sin
nπx

2l
cos

nπat

2l
(7)

The most general solution is

y(x , t) =
∞∑
n=1

cn sin
nπx

2l
cos

nπat

2l
(8)
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Solution of a problem on vibrating string with initial
velocity zero

Using the boundary condition (iv) in (8) we get

y(x , 0) =
∞∑
n=1

cn sin
nπx

2l
=

{
bx
l when 0 < x < l
b
l (2l − x) when l < x < 2l .

where cn is given by

cn =
2

2l

[∫ l

0

b

l
x sin

nπx

2l
dx +

∫ 2l

l

b

l
(2l − x) sin

nπx

2l
dx

]

=
b

l2

x (− cos nπx
2l

nπ
2l

)
− 1

− sin nπx
2l

n2π2

4l2

l

0

+
b

l2

(2l − x)

(
−

cos nπx
2l

nπ
2l

)
− (−1)

− sin nπx
2l

n2π2

4l2

2l

l

=
b

l2

[
(l)

2l

nπ

(
− cos

nπ

2
− 0

)
+

4l2

n2π2

(
sin

nπ

2

)]
+

b

2l2

[
0− (l)

2l

nπ

(
− cos

nπ

2

)
−

4l2

n2π2

(
0− sin

nπ

2

)]

=
8b

n2π2
sin

nπ

2
.

y(x , t) =
∞∑
n=1

4b

n2π2
sin

nπ

2
sin

nπx

2l
cos

nπat

2l
.
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Problem on vibrating string with initial velocity zero

Example 13.

A tightly stretched string with fixed end points x = 0 and x = l is initially
in a position given by y(x , 0) = y0 sin3

(
πx
l

)
. It is released from rest from

this position. Find the displacement at any time.
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Problem on vibrating string with initial velocity zero

The partial differential equation corresponding to the BVP is

∂2y

∂t2
= a2∂

2y

∂x2
(1)

The boundary conditions are

(i) y(0, t) = 0,∀ t > 0

(ii) y(l , t) = 0,∀ t > 0

(iii)

(
∂y

∂t

)
t=0

= 0, 0 < x < l

(iv) y(x , 0) = y0 sin3
(πx

l

)
, 0 < x < l
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Solution of a problem on vibrating string with initial
velocity zero

Solving (1) by method of separation of variable we get,

y(x , t) = (c1x + c2)(c3t + c4) (2)

y(x , t) = (c5e
px + c6e

−px)(c7e
pat + c8e

−pat) (3)

y(x , t) = (c9 cos px + c10 sin px)(c11 cos pat + c12 sin pat) (4)

Using the boundary conditions (i) and (ii) both the equation (2) and (3)
are trivial solutions, that is y(x , t) = 0
Hence the most suitable solution for equation (1) is

y(x , t) = (c9 cos px + c10 sin px)(c11 cos pat + c12 sin pat)
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Solution of a problem on vibrating string with initial
velocity zero

Using the boundary condition (i), we get

c9(c11 cos pat + c12 sin pat) = 0

But (c11 cos pat + c12 sin pat) 6= 0

=⇒ c9 = 0

y(x , t) = (c10 sin px)(c11 cos pat + c12 sin pat) (5)

Using the boundary condition (ii), we get

c10 sin pl(c11 cos pat + c12 sin pat) = 0
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Solution of a problem on vibrating string with initial
velocity zero

But (c11 cos pat + c12 sin pat) 6= 0 and c10 6= 0 [if c10 = 0, we get a trivial
solution as y(x , t) = 0]

sin pl = 0

pl = nπ

p =
nπ

l

Hence equation (5) becomes

y(x , t) =
(
c10 sin

nπx

l

)(
c11 cos

nπat

l
+ c12 sin

nπat

l

)
(6)
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Solution of a problem on vibrating string with initial
velocity zero

To use the boundary conditions (iii), first differentiating (6) with respect
to t we get

∂y(x , t)

∂t
=
(
c10 sin

nπx

l

)(
−c11

nπa

l
sin

nπat

l
+

nπa

l
c12 cos

nπat

l

)
(
∂y

∂t

)
t=0

= 0 =⇒(
c10 sin

nπx

l

)(
0 +

nπa

l
c12(1)

)
= 0

But c10 6= 0, sin nπx
l 6= 0 and nπx

l 6= 0 and hence c12 = 0, therefore

y(x , t) = c10c11 sin
nπx

l
cos

nπat

l
(7)
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Solution of a problem on vibrating string with initial
velocity zero

The most general solution is

y(x , t) =
∞∑
n=1

cn sin
nπx

l
cos

nπat

l
(8)

Using the boundary condition (iv) in (8) we get

y(x , 0) =
∞∑
n=1

cn sin
nπx

l
= y0 sin3

(xπ
l

)
Hence

∞∑
n=1

cn sin
nπx

l
= y0 sin3

( xπ
l

)
=

y0

4

(
3 sin

xπ

l
− sin

3xπ

l

)
c1 sin

xπ

l
+ c2 sin

2xπ

l
+ c3 sin

3xπ

l
+ · · ·

=
y0

4

(
3 sin

xπ

l
− sin

3xπ

l

)
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Solution of a problem on vibrating string with initial
velocity zero

Equating the coefficient on both side we get
c1 = 3y0

4 , c3 = − y0
4 and cn = 0, ∀ n 6= 1, 3. Hence

y(x , t) =
3y0

4
sin

xπ

l
cos

πat

l
− y0

4
sin

3xπ

l
cos

3πat

l
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Problem on vibrating string with initial velocity zero

Example 14.

A tightly stretched string with fixed end points x = 0 and x = l is initially
in a position given by y(x , 0) = y0 sin

(
πx
l

)
. It is released from rest from

this position. Find the displacement at any time.
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Solution of a problem on vibrating string with initial
velocity zero

The partial differential equation corresponding to the BVP is

∂2y

∂t2
= a2∂

2y

∂x2
(1)

The boundary conditions are

(i) y(0, t) = 0,∀ t > 0

(ii) y(l , t) = 0,∀ t > 0

(iii)

(
∂y

∂t

)
t=0

= 0, 0 < x < l

(iv) y(x , 0) = y0 sin
(πx

l

)
, 0 < x < l
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Solution of a problem on vibrating string with initial
velocity zero

Solving (1) by method of separation of variable we get,

y(x , t) = (c1x + c2)(c3t + c4) (2)

y(x , t) = (c5e
px + c6e

−px)(c7e
pat + c8e

−pat) (3)

y(x , t) = (c9 cos px + c10 sin px)(c11 cos pat + c12 sin pat) (4)
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Solution of a problem on vibrating string with initial
velocity zero

Using the boundary conditions (i) and (ii) both the equation (2) and (3)
are trivial solutions, that is y(x , t) = 0
Hence the most suitable solution for equation (1) is

y(x , t) = (c9 cos px + c10 sin px)(c11 cos pat + c12 sin pat)

Using the boundary condition (i), we get

c9(c11 cos pat + c12 sin pat) = 0

But (c11 cos pat + c12 sin pat) 6= 0

=⇒ c9 = 0

y(x , t) = (c10 sin px)(c11 cos pat + c12 sin pat) (5)
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Solution of a problem on vibrating string with initial
velocity zero

Using the boundary condition (ii), we get

c10 sin pl(c11 cos pat + c12 sin pat) = 0

But (c11 cos pat + c12 sin pat) 6= 0 and c10 6= 0 [if c10 = 0, we get a trivial
solution as y(x , t) = 0]

=⇒ sin pl = 0

pl = nπ

p =
nπ

l

Hence equation (5) becomes

y(x , t) =
(
c10 sin

nπx

l

)(
c11 cos

nπat

l
+ c12 sin

nπat

l

)
(6)

P. Sam Johnson Applications of Partial Differential Equations March 6, 2020 73/233



Solution of a problem on vibrating string with initial
velocity zero

To use the boundary conditions (iii), first differentiating (6) with respect
to t we get

∂y(x , t)

∂t
=
(
c10 sin

nπx

l

)(
−c11

nπa

l
sin

nπat

l
+

nπa

l
c12 cos

nπat

l

)
(
∂y

∂t

)
t=0

= 0 =⇒(
c10 sin

nπx

l

)(
0 +

nπa

l
c12(1)

)
= 0
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Solution of a problem on vibrating string with initial
velocity zero

But c10 6= 0, sin nπx
l 6= 0 and nπx

l 6= 0 and hence c12 = 0, therefore

y(x , t) = c10c11 sin
nπx

l
cos

nπat

l
(7)

The most general solution is

y(x , t) =
∞∑
n=1

cn sin
nπx

l
cos

nπat

l
(8)

Using the boundary condition (iv) in (8) we get

y(x , 0) =
∞∑
n=1

cn sin
nπx

l
= y0 sin

(xπ
l

)
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Solution of a problem on vibrating string with initial
velocity zero

Hence

∞∑
n=1

cn sin
nπx

l
= y0 sin

(xπ
l

)
c1 sin

xπ

l
+ c2 sin

2xπ

l
+ c3 sin

3xπ

l
+ · · ·

= y0 sin
(xπ

l

)
Equating the coefficient on both side we get
c1 = y0, and cn = 0 ∀n = 2, 3, . . .. Hence

y(x , t) = y0 sin
xπ

l
cos

πat

l
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Solution of a problem on vibrating string with initial
velocity zero
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Solution of a problem on vibrating string with initial
velocity zero
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Solution of a problem on vibrating string with initial
velocity zero
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Solution of a problem on vibrating string with initial
velocity zero
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