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Overview

Partial differential equations are classified in many ways. One such way is
classifying them as linear and non-linear. Linear equations have an
algebraic nature in their solution sets; in the sense that these solutions can
be superimposed. Nonlinear equations do not share this property.

Equally important in classification schemes of a PDE is the specific nature
of the physical phenomenon that it describes; for example, a PDE can be
classified as wave-like, diffusion like, or static, depending upon whether it
models wave propagation, a diffusion process, or an equilibrium state,
respectively. For example, Laplace's equation is a linear equilibrium
equation; the heat equation is a linear diffusion equation because the heat
flow is a diffusion process. In three lectures, we discuss some physical
examples and methods for solving them using PDE as a tool.
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Classification of Partial Differential Equations of Second

order

The general form of second order partial differential equation is given by

0°z 0°z 0°z 0z 0z
A8x2 + Baxay + C8y2 D@ + Jy FFz=6(xy)

where A, B, C, D, E, F and G are functions of x and y or constants.

Now consider the term
B? — 4AC.

(i) If B2 —4AC < 0, then the equation is Elliptic
(ii) If B2 —4AC > 0, then the equation is Hyperbolic
(iii) If B2 —4AC = 0, then the equation is Parabolic.
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Examples

Exercise 1.

Classify the following equations

1. e —3uxy +uy, =0
Solution. Here A=1, B= —3 and C = 1. Therefore

B2 —4AC =(-3)>-4(1)(1)=9-4=5>0

Hence the given equation is hyperbolic.

2. duyx — Tuyy, +3u,, =0
Solution. Here A= 4, B= —7 and C = 3. Therefore

B> —4AC = (-7)>-4(4)(3)=49-48=1>0

Hence the given equation is hyperbolic.
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Examples

Exercise 2.

Classify the following equations

3. Cuy + 2¢uxy +uy, =0,a#0
Solution. Here A= c2, B =2c and C = 1. Therefore

B? — 4AC = (2¢)* — 4(c®)(1) = 4c? —4c? =0

Hence the given equation is Parabolic.

4v Uxx aF 2UXy + 5Uyy = 0
Solution. Here A=1, B =2 and C = 5. Therefore

B> —4AC = (2)> - 4(1)(5) =4 —-20=-16 < 0

Hence the given equation is elliptic.
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Examples

Exercise 3.

Classify the following equations

5. 8uxx — 2uy, — 3u,, =0
Solution. Here A=8, B = —2 and C = —3. Therefore

B? — 4AC = (—2)> — 4(8)(—3) =4 +96 = 100 > 0

Hence the given equation is hyperbolic.

6. fux + k?f, =0
Solution. Here A=1, B=0 and C = k%. Therefore

B? — 4AC = 0 — 4(1)(k?) = —4k?

If k =0 then

B? —4AC =0,

aVallla) [ o . a [ D aVa L
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Examples

Exercise 4.

Classify the following equations

2 92 92 o) fo) _
7. 458 + 400 + T4 692 — 858 — 16u =0

Solution. Here A= 4, B=4 and C = 1. Therefore

B? —4AC = (4)>—4(4)(1)=16—-16=0
Hence the given equation is parabolic.

5 2
8. Z4+24=(3)"+ (%)
Solution. Here A=1, B=0 and C = 1. Therefore

B2 —4AC=0—-4(4)(1)=—-4<0

Hence the given equation is elliptic.

P. Sam Johnson Applications of Partial Differential Equations March 6, 2020 7/233



Examples

Classify the following equations

9. y2u, — 2Xylyy, + xzuyy +2ux —3uy, =0
Solution. Here A= y?, B = —2xy and C = x°. Therefore

B — 4AC = (=2xy)* — 4(y*)(x*) = 4x°y* — 4x*y* = 0

Hence the given equation is parabolic.
10. y2uXX + xzuyy + u)2< + u}z, +7=0
Solution. Here A= y?, B =0 and C = 1. Therefore

B? — 4AC =0 — 4(y?)(1) = —4y?

If y =0 then B> — 4AC = 0, the given equation is parabolic.
If y # 0 then B2 — 4AC < 0, the given equation is elliptic.
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Examples

Classify the following equations
11. uyx + xuyy, =0
Solution. Here A=1, B =0 and C = x. Therefore

B% — 4AC =0 — 4(1)(x) = —4x

If x =0 then B2 — 4AC = 0, the given equation is parabolic.

If x > 0 then B> — 4AC < 0, the given equation is elliptic.

If x < 0 then B> — 4AC > 0, the given equation is hyperbolic.
12, X2 + 2xUxy + (1 — y?)uy, =0

Solution. Here A= x?, B =2x and C = 1 — y?. Therefore

B? — 4AC = (2x)® — 4(x*)(1 — y?) = 4x?y?

If x =0,y =0 then B> —4AC = 0, the given equation is parabolic. If
x #0,y # 0 then B> — 4AC > 0, the given equation is hyperbolic.
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Method of Separation of Variables

This is the one of the simple and mostly used method to solve the second
order partial differential equations. Since in all our partial differential
equations we take z as a dependent variable and x and y as independent
variables, then the relation z = f(x, y) to be the solution.

In this method we assume that the solution is the product of two
functions, one of them is function of x alone and the other a function of y
alone. By this the partial differential equation now converted into ordinary
differential equations and this equations can solved easily. The following
examples illustrate us how this procedure works.
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Examples

Example 7.

Solve 3X% - 2yg—j = 0 by the method of separation of variables.

Solution. The given differential equation is 3x% — ng—; =0,

Let us assume that z = X(x)Y(y) be the solution of the above equation.
Then

0z 0z
— =X'Y d— = XY'.
Ox an dy

Substituting these values in partial differential equation we get 3xX'Y — 2yXY’ = 0.
X _ k
X T 3x’
k k Kk

2 =cx3y2, where c = c1c.

X o Y X' _ oo Lk
Hence we get 3x45- = 2y = k (say). Now 3x*- = k gives and hence X = c1x3.

oo ! g k k
In a similar way 2yy7 =k gives Y = coy2. Hence z = c1x3 oy
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Examples

Example 8.

Solve 2% 4F %z/ =0, z(x,0) = 5e~* by the method of separation of variables.

Solution. The given differential equation is 2% 4 g—; =0.
Let us assume that z = X(x)Y(y) be the solution of the above equation. Then
% =X'Y and g—; = XY'. Substituting these values in partial differential equation we

get 2X'Y + XY’ = 0 and hence 2X7/ = —Y7/ = k (say). Now, 2X7/ = k gives X = clegx.

. . / .
In a similar way, Y7 = k gives Y = ce¥. Hence

K
z(x,y) = cre2*crek”
K
= ce2Xelr
g k k
where ¢ = c1cy. Give that z(x,0) = 5e~*. So z(x,0) = ce2*ek(®) and 5e=* = ce2*.

Solving them, we get ¢ =5 and % =-1=k=-2.
Substituting these values we get

z(x,y) = 5e~(x+2),
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One dimensional Wave Equation

Let us consider a tightly stretched elastic string of length / is fixed at the
end points 0 and A, subject to a constant tension T. The string is
released from rest and allowed to vibrate. Now we shall determine the
displacement y(x, t) of the point x of the string at time t > 0. We make
the following assumptions.

1. The mass per unit length of the string is constant.
2. The string is perfectly elastic and so it does not offer resistance to bending.

3. The tension caused by stretching the string before fixing it to the end points is constant
at all the points of the deflected string at any time.

4. The tension T is so large such that the gravitational force and the friction may be
neglected.

5. The string performs a small transverse motion in a vertical plane, that is, every particle of
the string moves strictly vertically and so that the deflection and the slope at every point
of the string remain small in absolute value.
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One dimensional Wave Equation

From these assumptions we may except that the solution y(x, t) of the
differential equation to be obtained will reasonably well to describe small
vibrations of the string.

To derive the differential equation let us consider the forces acting on a
small portion PQ where P(x,y) and Q(x + Ax,y + Ay) of the string (see

fig.)
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One dimensional Wave Equation

Let ¥ and ¥ 4+ A be the angles made by the tangents at P and Q
respectively with the x — axis and PQ = As.

By Newton's second law of motion, the total force acting on this piece of
string is equal to the mass of the string multiplied by its acceleration.
That is,

Force = mass x acceleration (1)
52y
= (mAs) <5 (2)

P. Sam Johnson Applications of Partial Differential Equations March 6, 2020 15/233



One dimensional Wave Equation

Here to find acceleration we take partial derivative of y, w.r.t. t because y
is a function of two variable. We assume in this equation that the string is
moving only in the xy-plane and that each particle in the string moves
only vertically. The actual external force acting on PQ in the positive y
direction is

= Tsin(yp + AY) — Tsiny

= T( + Db — ) = TA 3)
Equating (1) and (2) we have
o2
(mAs)a—t}Q/ =TAY
Py _Thy
ot2  m As
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One dimensional Wave Equation

Now taking the limit as Q@ — P we get

Py _ T dv "
0t2  mds
where % is the curvature at P is given by
62
v _1__ 5r %
ds p oo\ 2 3 ox?
o]
. ov\2 . .
since (8%) is very small by the assumption (5). Hence we get
0y Ty ,0%y s T
w:;@:a ﬁ’ where a :E (5)
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Solution of wave equation by separation of variables

The wave equation is
0? 0?
gy _ poY (1)
ot? Ox?
We try to solve the equation by separation of variable method.Let
y(x, t) = X(x)T(t) (2)

be the solution of the above equation with X(x) is a function of x alone
and T is a function of t alone.

Differentiating (2) partially with respect to x and t we get

2 2
%:X”T and g—t};:XT”.
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Solution of wave equation by separation of variables

Substituting these values in (1) we get

XT" = 2X"T

X" 1T
X 2T K
);/ =k and 372—/7/_ =k
X"~ kX =0 (3)
and
T" — ka®T =0 (4)
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Solution of wave equation by separation of variables

Case 1. If k =0 then

X"=0 T"=0
d’X d°T
dx? dt2
X(x) = (ax+ o) T(t) = (cst + ca)
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Solution of wave equation by separation of variables

Case 2. If k is positive then k = p? (say)

X//_p2X:0 T//_pzazt:O
d>X 2 d?T
CIX2 dt2 p
m2_p32:0 m2—32p2:0
X(x) = (cs5eP + cge™ ) T(t) = (c7eP™ + cge P?)
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Solution of wave equation by separation of variables

Case 3. If k is negative then k = —p? (say)

X”—i—p2X:0 T//_|_p232t:O
’X d’T
— S +p°X=0; —— +p°T
a2 P az P
m>+p?>=0 m? + a’p? =0
m = +pi m = +api

X(x) = (cgcos px + ciosin px) T(t) = (c11 cos pat + c12 sin pat)
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Solution of wave equation by separation of variables

Hence all possible solutions of the wave equation are

y(x,t) = (ax + o)(c3t + ca) (5)
y(x,t) = (cse” + coe P*)(creP™ + cge™P?Y) (6)
y(x,t) = (cg cos px + c10 sin px)(c11 cos pat + c12 sin pat) (7)
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Solution of wave equation by separation of variables

Out of these three solution we have to choose the correct solution which is
suitable for the given boundary conditions and physical nature of the
problem. For the vibration of the string problem, the two boundary
conditions y(0,t) = 0 and y(/,t) = 0 is always possible since the two ends
at x =0 and x =/ are fixed. Now we applying these two boundary
conditions to find out the correct solution.
Applying the condition y(0, t) = 0 for the equation (5) we get

y(x, t) =(ax + c2)(cst + ca)

y(O, t) =C2(C3t + C4) =0

— =0

Applying the condition y(/,t) = 0, we get

y(l,t) =c1(/)(cst +c4) =0
I#0 and (ct+c)#0
—c =0



Solution of wave equation by separation of variables

Hence we get y(x, t) = 0 as trivial solution. Applying the condition
y(0, t) = 0 for the equation (6) we get
y(0,t) =(cs + cg)(creP® + cge P**) =0
(c7eP®" + cge P?) £ 0

= (s +¢)=0
Applying the condition y(/,t) = 0, we get

y(l,t) :(C5e”l + c6e_”l)(C7epat +cge P) =0
I#0 and (c7eP + cge P*) £0
— (cseP' + cge ) =0
as=0,c6=0
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Solution of wave equation by separation of variables

In this case also we get y(x, t) = 0 as trivial solution.
Hence the correct solution is

y(x, t) = (co cos px + ci1psin px)(c11 cos pat + ¢y sin pat).
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Problems on vibrating string with initial velocity zero

Example 9.

A tightly stretched flexible string has its ends fixed at x = 0 and x = {. At
the time t = 0, the string is given a shape defined by

F(x) = kx*(¢ — x),

where k is a constant, and then released from rest. Find the displacement
at any point x of the string at any time t > 0.
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Solution of a problem on vibrating string with initial

velocity zero

The partial differential equation corresponding to the BVP is

Py L0y
oz~ 7 o0 (1)

The boundary conditions are
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Solution of a problem on vibrating string with initial

velocity zero

Solving (1) by method of separation of variable we get,

y(x,t) = (ax+ o)(ct + ca) (2)
y(x, t) = (cse” + cge P¥)(creP™ + cge™ P?Y) (3)
y(x, t) = (g cos px + c1psin px)(c11 cos pat + ¢z sin pat) (4)

Using the boundary conditions (i) and (ii) both the equation (2) and (3)
are trivial solutions, that is y(x, t) =0
Hence the most suitable solution for equation (1) is

y(x,t) = (cg cos px + c10 sin px)(c11 cos pat + c12 sin pat)
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Solution of a problem on vibrating string with initial

velocity zero

Using the boundary condition (i), we get
co(c11 cos pat + crasin pat) =0
But (c11 cos pat + ciasin pat) # 0

= =0

y(x,t) = (c1osin px)(c11 cos pat + c12 sin pat) (5)
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Solution of a problem on vibrating string with initial

velocity zero

Using the boundary condition (ii), we get
cio sin pl(c11 cos pat + cip sin pat) =0

But (c11 cos pat + c12sin pat) # 0 and cio # O [if cijo = 0, we get a trivial
solution as y(x,t) = 0]

= sinp/ =0

pl = nw
_m
P=
Hence equation (5) becomes
t t
ybt) = (Clo sin MTX) (Cllcos mr/a + cizsin mT/a ) (6)
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Solution of a problem on vibrating string with initial

velocity zero

To use the boundary conditions (iii), first differentiating (6) with respect
to t we get

dy(x, t) . nmx nwa . nmat  nrma nrmat
51 (clgsm T) (—cll sin + C12 COS )

/ / /
ot t=0

(Clo sin mrTx> (0 + ni/aclg(l)) =0
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Solution of a problem on vibrating string with initial

velocity zero

But c10 # 0,sin 7 # 0 and #* # 0 and hence c1» = 0, therefore

. t
y(x,t) = cioci1 sin nilx cos n7r/a (7)

The most general solution is

nmat

o
y(x,t) = ; Cpsin ? cos — (8)
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Solution of a problem on vibrating string with initial

velocity zero

Using the boundary condition (iv) in (8) we get
y(x,0) = nz_:l Cp sin nilx = kx*(I — x)
where ¢, is given by

2 !
Ch = / k(Ix* — x3)sin ULLPN
I s I
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Solution of a problem on vibrating string with initial

velocity zero

) . 1
o= 2l oy () anem ) [T ) — e [ (e (ST
n = T ) 3.3 A
! 2 B i 0

2k 3
= 0+0+ n37r3(74lcosn7r72lc050)+0
2k 3 Y
= 7 a2+ 1)
4k N
= *ﬁ[l +2(-1)"]
o0
4kP3 nmwx nmat
x,t) = ———=[1+2(—1)"] sin — cos
.y( ’ ) Zl n37T3[ ( ) ] I /
n=
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Solution of a problem on vibrating string with initial

velocity zero
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Problem on vibrating string with initial velocity zero

Example 10.

A tightly stretched flexible string has its ends fixed at x =0 and x = [. At
the time t=0, the string is given by the displacement

f(x) = kx( — x),

where k is a constant, and then released from rest. Find the displacement
at any point x of the string at any time t > 0.
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Solution of a problem on vibrating string with initial

velocity zero

The Partial differential equation corresponding to the BVP is

Py L0y
oz~ 7 o0 (1)

The boundary conditions are

(Ny(0,t)=0,Vt>0
(i y(l,t)=0,vt >0

.n [ Oy B
(iir) <8t>t—o =0,0<x</

(iv) y(x,0) = k(Ix —x?), 0 < x < |
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Solution of a problem on vibrating string with initial

velocity zero

Solving (1) by method of separation of variable we get,

y(x,t) = (ax+ o)(ct + ca) (2)
y(x, t) = (cse” + cge P¥)(creP™ + cge™ P?Y) (3)
y(x, t) = (g cos px + c1psin px)(c11 cos pat + ¢z sin pat) (4)

Using the boundary conditions (i) and (ii) both the equation (2) and (3)
are trivial solutions, that is y(x, t) =0
Hence the most suitable solution for equation (1) is

y(x,t) = (cg cos px + c10 sin px)(c11 cos pat + c12 sin pat)
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Solution of a problem on vibrating string with initial

velocity zero

Using the boundary condition (i), we get
co(c11 cos pat + crasin pat) =0
But (c11 cos pat + ciasin pat) # 0

= =0

y(x,t) = (c1osin px)(c11 cos pat + c12 sin pat) (5)
Using the boundary condition (ii), we get

c10 sin pl(c11 cos pat + cip sin pat) =0
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Solution of a problem on vibrating string with initial

velocity zero

But (c11 cos pat + ¢z sin pat) # 0 and cio # 0 [if c10 = 0, we get a trivial
solution as y(x, t) = 0]

sinp/ =0
pl = nm
_nm
P=

Hence equation (5) becomes

. nmx nmat
y(x,t) = (Clo sin T) (cll cos

+ C12 sin

n7rat>

, (6)
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Solution of a problem on vibrating string with initial

velocity zero

To use the boundary conditions (iii), first differentiating (6) with respect
to t we get

dy(x, t) . nmx nwa . nmat  nrma nrmat
51 (clgsm T) (—cll sin + C12 COS )

/ / /
ot t=0

(Clo sin mrTx> (0 + ni/aclg(l)) =0
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Solution of a problem on vibrating string with initial

velocity zero

But c10 # 0,sin 7 # 0 and #* # 0 and hence c1» = 0, therefore

. t
y(x,t) = cioci1 sin nilx cos n7r/a (7)

The most general solution is

nmat

o
y(x,t) = ; Cpsin ? cos — (8)
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Solution of a problem on vibrating string with initial

velocity zero

Using the boundary condition (iv) in (8) we get

where ¢, is given by

2 ol > nmwx
= 7/ k(Ix — x“) sin dx
I Jo /
!
k 5 cos 17X sin 27X cos 17X
= (x—x%) | — T —(l—2x) (- 32 +(-2) =3
! 2 B 0

23
=—|0+0— (cos nm — cos 0)
n3n3

4kl2 TX nmat
t) = E —1- —— :
y(x, t) = 2, [ (— )]sm cos ;
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Problem on vibrating string with initial velocity zero

A tightly stretched string of length | has its ends fastened at x =0, x = I.
The mid point of the string is then taken to height h and the released

from rest from that position. Find the lateral displacement of a point of
the string at time t from the instant of release.
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Solution of a problem on vibrating string with initial

velocity zero

The partial differential equation corresponding to the BVP is
2 2
87)/ — 326 4 (1)
ot? Ox?
Equation of the line OA is

Equation of the line AB is

Nc DOUNGdJ
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March 6, 2020 46/233



Solution of a problem on vibrating string with initial

velocity zero

Solving (1) by method of separation of variable we get,

y(x,t) = (ax+ o)(ct + ca) (2)
y(x, t) = (cse” + cge P¥)(creP™ + cge™ P?Y) (3)
y(x, t) = (g cos px + c1psin px)(c11 cos pat + ¢z sin pat) (4)

Using the boundary conditions (i) and (ii) both the equation (2) and (3)
are trivial solutions, that is y(x, t) =0
Hence the most suitable solution for equation (1) is

y(x,t) = (cg cos px + c10 sin px)(c11 cos pat + c12 sin pat)
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Solution of a problem on vibrating string with initial

velocity zero

Using the boundary condition (i), we get
co(c11 cos pat + crasin pat) =0
But (c11 cos pat + ciasin pat) # 0

= =0

y(x,t) = (c1osin px)(c11 cos pat + c12 sin pat) (5)
Using the boundary condition (ii), we get

c10 sin pl(c11 cos pat + cip sin pat) =0
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Solution of a problem on vibrating string with initial

velocity zero

But (c11 cos pat + ¢z sin pat) # 0 and cio # 0 [if c10 = 0, we get a trivial
solution as y(x, t) = 0]

= sinp/ =0

pl = nm
_nm
P=

Hence equation (5) becomes

(6)

. hmat
+ c12s8In )

. nmx nmat
y(x,t) = (Clo sin T) (cll cos ;
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Solution of a problem on vibrating string with initial

velocity zero

To use the boundary conditions (iii), first differentiating (6) with respect
to t we get

dy(x, t) . nmx nwa . nmat  nrma nrmat
51 (clgsm T) (—cll sin + C12 COS )

/ / /
ot t=0

(Clo sin mrTx> (0 + ni/aclg(l)) =0
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Solution of a problem on vibrating string with initial

velocity zero

But c10 # 0,sin 7 # 0 and #* # 0 and hence c1» = 0, therefore

. hmx nmat
y(x,t) = croci1 sin —cos— (7)

The most general solution is

nmat (8)

y(x,t) = Z Cn sin = cos /

Using the boundary condition (iv) in (8) we get

y(x 0)—Zc,,sm—

{2’I’X when 0<x<é

20— x) when f<x<I.
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Solution of a problem on vibrating string with initial

velocity zero

where ¢, is given by
2 5’ 2h | nmx I 2h . onmwx
cn:7 |:/0 szm ] d><+/% T(/—x)sln . dx:|

1 i
4h cos X sin 27X 2 4h cos X sin 17X
i o G Bl G = S Gl Sy -l Bl Gl Wty
! 2 0 ! 2 E/

4h [1 1 nm 2 _onm 4h I nm ? . onm
= — ——<7cos—70 + sin — + = [0—- -— 7cos—>77 0 — sin —
12 |2 nm 2 n2n2 2 12 2 nm 2 272 2

4h 27 nm

— —— sin —
12 n272 2
8h  nm

sin
n2n2 2

o
8h . nm . nmx nmat
E —— sin — sin —— cos .
n2

y(X7 t): 7T2 2 / l

n=1
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Problem on vibrating string with initial velocity zero

A tightly stretched string of length 2/ has its ends fastened at x = 0,

x = 21. The mid point of the string is then taken to height b and the
released from rest from that position. Find the lateral displacement of a
point of the string at time t from the instant of release.
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Solution of a problem on vibrating string with initial

velocity zero

The partial differential equation corresponding to the BVP is

Py ,0%
7 227 1
a2 ~ 7 ox2 (1)
Equation of the line OA is
-0
b
Y=
Equation of the line AB is
b—0
y — /_2/(x—2/)
y= ?(2/—X)
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Solution of a problem on vibrating string with initial

velocity zero

The boundary conditions are

(i) y(0,t)=0,Vt >0
(i) y(2l,t) =0,¥Yt >0

(iii) <ay> =0,0<x<2/
ot ).,

TX when 0<x </

b
?(2/ —x) when [<x<2l.

() y(x,0) = {
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Solution of a problem on vibrating string with initial

velocity zero

Solving (1) by method of separation of variable we get,
y(x,t) = (ax+ c)(c3t + c4) (2)
y(x,t) = (cse” + cge ) (creP™ + cge™P?") (3)
y(x, t) = (cg cos px + c1p sin px)(c11 cos pat + c17 sin pat) (4)
Using the boundary conditions (i) and (ii) both the equation (2) and (3)

are trivial solutions, that is y(x, t) =0
Hence the most suitable solution for equation (1) is

y(x,t) = (cg cos px + c10 sin px)(c11 cos pat + c12 sin pat)
Using the boundary condition (i), we get
co(c11 cos pat + ci2 sin pat) = 0.
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Solution of a problem on vibrating string with initial

velocity zero

But (c11 cos pat + c12 sin pat) # 0

— =0

y(x,t) = (c10sin px)(c11 cos pat + c12 sin pat) (5)
Using the boundary condition (ii), we get
c10sin p2/(c11 cos pat + cip sin pat) = 0

But (c11 cos pat + c12sin pat) # 0 and cio # O [if cijo = 0, we get a trivial
solution as y(x,t) = 0]

= sinp2/ =0

p2l = nw
_onm
P=5
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Solution of a problem on vibrating string with initial

velocity zero

Hence equation (5) becomes

( t)—(c snmr—x> <c cos n7rat+c sin n7rat> (6)
ypot)=\cosin—; 11 o 125N =7

To use the boundary conditions (iii), first differentiating (6) with respect
to t we get

dy(x,t)
ot

n7rx> ( nma - nmat n nma nﬂat)
U SN T 28 T

(Clo sin n;rl ) <0+ ;r/ c12(1)) =0
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Solution of a problem on vibrating string with initial

velocity zero

But c10 # 0,sin 7 # 0 and "7 # 0 and hence c1» = 0, therefore

. nmx nmat
y(x,t) = cioci1 sin ) s, (7)

The most general solution is

nmat

o
. nNmXxX
y(x,t) = ; Cn'Sin — = €os — (8)
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Solution of a problem on vibrating string with initial

velocity zero

Using the boundary condition (iv) in (8) we get
- . nmXx b—lx when 0<x </
?(2/ —x) when [<x<2l

where ¢, is given by
2 I' b nmx 2l b nmx
n = — [/ —xsin dx+/ —(2/ — x)sin
2/ LJo 1 2/ [ 2/
b cos 27X sin 07X ! b cos 27X sin 27X 2
=5 |x <77M2’ ) -1 - "2:2’ +5 @ =9 <77M2’ > — (-1 |- HZ:Z’
0 2 412 /

o dx}

2 R
b 2/ nm 42 . b 2/ nm 42 . onm
=5 |0 (o T ) i (0 F) | om0 (Fee ) - s (0 )
8b . nmw
- I'127\'2 s 7
oo
(x, 1) 4b . nm . nmx nmat
yix = E ———= SIN — SIN ——— COS
’ n2m2 2 2/ 2/

n=1
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Problem on vibrating string with initial velocity zero

A tightly stretched string with fixed end points x = 0 and x = | is initially

in a position given by y(x,0) = yosin® (Z*). It is released from rest from
this position. Find the displacement at any time.
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Problem on vibrating string with initial velocity zero

The partial differential equation corresponding to the BVP is

PPy L,y
92 = T o (1)

The boundary conditions are

(i) y(0,t) =0,Vt >0
(i y(l,t) =0,vt >0

(iif) <8y> —0,0<x<]
It ) o

(iv) y(x,0) = yosin® (LIX) ,0<x <
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Solution of a problem on vibrating string with initial

velocity zero

Solving (1) by method of separation of variable we get,

y(x,t) = (ax+ o)(ct + ca) (2)
y(x, t) = (cse” + cge P¥)(creP™ + cge™ P?Y) (3)
y(x, t) = (g cos px + c1psin px)(c11 cos pat + ¢z sin pat) (4)

Using the boundary conditions (i) and (ii) both the equation (2) and (3)
are trivial solutions, that is y(x, t) =0
Hence the most suitable solution for equation (1) is

y(x, t) = (cg cos px + cig sin px)(c11 cos pat + ci2 sin pat)
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Solution of a problem on vibrating string with initial

velocity zero

Using the boundary condition (i), we get
co(c11 cos pat + crasin pat) =0
But (c11 cos pat + ciasin pat) # 0

= =0

y(x,t) = (c1osin px)(c11 cos pat + c12 sin pat) (5)
Using the boundary condition (ii), we get

c10 sin pl(c11 cos pat + cip sin pat) =0
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Solution of a problem on vibrating string with initial

velocity zero

But (c11 cos pat + ¢z sin pat) # 0 and cio # 0 [if c10 = 0, we get a trivial
solution as y(x, t) = 0]

sinp/ =0
pl = nm
_nm
P=

Hence equation (5) becomes

. nmx nmat
y(x,t) = (Clo sin T) (cll cos

+ C12 sin

n7rat>

, (6)
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Solution of a problem on vibrating string with initial

velocity zero

To use the boundary conditions (iii), first differentiating (6) with respect
to t we get

dy(x, t) nmx nwa . nmat  nrma nrmat
51 (Clo sin T) (—cll sin + C12 COS )

/ / / /
oy =0=
ot ).

(Clo sin n7/r ) (0+ 7; c12(1)) =0
But c1o # 0,sin 7 # 0 and ** # 0 and hence c1» = 0, therefore

nmwx nmat

y(x,t) = croci1 sin o cos— (7)
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Solution of a problem on vibrating string with initial

velocity zero

The most general solution is

t
y(x,t) =) cpsin ? cos n7rla (8)

n=

1
Using the boundary condition (iv) in (8) we get

. nmwx 3 (X
E c,,sm——yosm e
Hence
oo
. nmx g (XxT
chsm—:yosm (7)
! /
n=1

Yo . XT . 3xmw . XT . 2xm . 3xm
:I 3smT—S|nT clsmT—l—czsmT—l-qsmT—&—---

_¥ X . 3xm
3sin — —sin —
4 I /
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Solution of a problem on vibrating string with initial

velocity zero

Equating the coefficient on both side we get

a= %, c3=—%and ¢, =0, Vn#1,3. Hence
(x, 1) 30 . XT mat  yp . 3xw 3mat
x,t) = —— sin — cos — — =— sin —— cos
Y 4 "7 e I
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Problem on vibrating string with initial velocity zero

Example 14.

A tightly stretched string with fixed end points x = 0 and x = | is initially

in a position given by y(x,0) = yosin (T*). It is released from rest from
this position. Find the displacement at any time.
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Solution of a problem on vibrating string with initial

velocity zero

The partial differential equation corresponding to the BVP is

Py L0y
oz~ 7 o0 (1)

The boundary conditions are
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Solution of a problem on vibrating string with initial

velocity zero

Solving (1) by method of separation of variable we get,

y(x,t) = (ax+ o)(ct + ca) (2)
y(x, t) = (cse” + cge P¥)(creP™ + cge™ P?Y) (3)
y(x, t) = (g cos px + c1psin px)(c11 cos pat + ¢z sin pat) (4)
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Solution of a problem on vibrating string with initial

velocity zero

Using the boundary conditions (i) and (ii) both the equation (2) and (3)
are trivial solutions, that is y(x,t) =0
Hence the most suitable solution for equation (1) is

y(x,t) = (cg cos px + c1gsin px)(c11 cos pat + ¢z sin pat)
Using the boundary condition (i), we get
co(c11 cos pat + cipsin pat) =0
But (c11 cos pat + ciasin pat) # 0

== =0

y(x,t) = (c1osin px)(c11 cos pat + c12 sin pat) (5)
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Solution of a problem on vibrating string with initial

velocity zero

Using the boundary condition (ii), we get
cio sin pl(c11 cos pat + cip sin pat) =0

But (c11 cos pat + c12sin pat) # 0 and cio # O [if cijo = 0, we get a trivial
solution as y(x,t) = 0]

= sinp/ =0

pl = nw
_m
P=
Hence equation (5) becomes
t t
ybt) = (Clo sin MTX) (Cllcos mr/a + cizsin mT/a ) (6)
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Solution of a problem on vibrating string with initial

velocity zero

To use the boundary conditions (iii), first differentiating (6) with respect
to t we get

dy(x, t) . nmx nwa . nmat  nrma nrmat
51 (clgsm T) (—cll sin + C12 COS )

/ / /
ot t=0

(Clo sin mrTx> (0 + ni/aclg(l)) =0
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Solution of a problem on vibrating string with initial

velocity zero

But c10 # 0,sin 7 # 0 and #* # 0 and hence c1» = 0, therefore

. t
y(x,t) = cioci1 sin nilx cos n7r/a (7)

The most general solution is

nmat

o
y(x,t) = ; Cpsin ? cos — (8)

Using the boundary condition (iv) in (8) we get

XT

y(x,0) = chsin mrTx = yp sin (T)
n=1
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Solution of a problem on vibrating string with initial

velocity zero

Hence

oo
. nmx . /XT
E CpSIN —— = ypsin (—)
/ /
n=1
X 2xm

. . . 3xT
C15IHT+C2SIHT+C3SIHT+”'

. XT
= ypsin (—)
/
Equating the coefficient on both side we get
c1=yo, and ¢, =0Vn=2,3,.... Hence

. Xm mat
y(x,t) = ypsin - cos -
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Solution of a problem on vibrating string with initial

velocity zero
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Solution of a problem on vibrating string with initial

velocity zero
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Solution of a problem on vibrating string with initial

velocity zero
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Solution of a problem on vibrating string with initial

velocity zero
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